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Abstract  

This research aims to classify dichotomously the differences and diversity in human resources of all countries in the Asian region to clarify the 
position of each country based on the state of its human resources. Several countries were not included in the analysis due to limited data 
availability. This research uses the K-Mean clustering method. Clustering is an approach to dividing a set of points into similar groups called 
clusters. K-Mean clustering is one of the most popular unsupervised learning methods in machine learning. Based on the results of the K-Mean 
clustering analysis, the readiness of human resources in Asian countries shows that there are clusters or groups, with cluster 1 having as many 
as 29 members and cluster 2 having as many as 9 members. K-Mean clustering for the optimal number of two clusters is dichotomous, so it uses 
clustering assumptions between country clusters with good and poor human resource readiness.   
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INTRODUCTION 

People cannot be the most critical asset, only the right people (Collins, 2001). Superior human resources are 
the most valuable asset for a nation to face various opportunities and risks that are increasingly changing rapidly 
and cannot be predicted. Many institutions have developed an instrument model that addresses the level of 
human resources in a country, including HDI (Human Development Index) developed by UNDP (United 
Nations Development Program), HCI (Human Capital Index) by World Bank, and GCI (Global 
Competitiveness Index) by WEF (World Economic Forum). The HDI was first launched in 1990, representing 
a paradigm shift in development thinking and measurement (Assa, 2021). HDI shifts the focus of development 
economics from national income accounting to people-centered policies, with measures that can be used to 
assess a country's economic and social expansion (Hickel, 2020). HDI has become a widely accepted proxy for 
human development over the past 30 years (Zhang & Zhu, 2022) and an essential criterion for determining 
national progress that focuses on people and their capabilities (Sadiq et al., 2022).  

HDI is a humanistic instrument published by UNDP, with wealth indicators, gross national income per capita, 
knowledge indicators, and health and life expectancy indicators (Kancherla et al., 2019). The index is used to 
evaluate several social issues, such as environmental sustainability, security and human rights, and gender 
equality, and measure the relationship between these elements and human demographic and ecological 
attributes such as age, water access, access to financial resources, and education (Ladi et al., 2021; Barrios-
Garrido et al., 2020). HDI develops over time, with changes in calculation techniques and dimensional 
indicators (Abdullahi, 2024; Biggeri & Mauro, 2018; Mangaraj & Aparajita, 2020). HDI identifies criteria for 
healthy living (Martínez-Mesa et al., 2017; Veisani et al., 2018) and a decent standard of living, which is closely 
related to quality of life (Martínez-Guido et al., 2019). So, countries with low HDI show low health quality 
(Hwang et al., 2019), high mortality rates (Pervaiz & Faisal, 2017), and educational inequality (Sarkodie & 
Adams, 2020). HDI even has a significant influence on the socio-economic (Iskandar et al., 2020; Resce, 2021), 
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political harmony of a region (Niranjan, 2020), and the ecological condition of an area (Wang, Danish, Zhang, 
& Wang, 2018; Long et al., 2020). HDI contributed significantly in emphasizing that economic growth, people, 
and capabilities should be considered to assess a country's development (Resce, 2021). Apart from HDI, a 
relevant indicator used as a reference for human resource readiness is HCI (Human Capital Index).  

The World Bank Human Capital Index (HCI) aims to provide new information on the future productivity of 
each country's workforce by synchronizing the available International Large-Scale Assessment (ILSA) and the 
results of regional test programs (Liu & Steiner-Khamsi, 2020). Countries with high human capital and 
knowledge indices will more successfully attract efficiency-seeking types of FDI (Foreign Direct Investment) 
(Sadeghi et al., 2020). HC is a variable in the production function and a direct determinant of economic 
prosperity (Yu & Deng, 2021). HC (Human Capital) refers to population attributes that, together with physical 
capital such as facilities, infrastructure, and other tangible assets, contribute to economic productivity (Lim et 
al., 2018). HC is characterized as the aggregate level of education, training, skills, and health in a population 
(Campbell & Üngör, 2020); it influences the degree to which technology can be developed, adopted, and used 
to increase productivity. 

HC is considered an important component for the development of economic growth throughout the world 
(Çakar et al., 2021). HC increases labor productivity, promotes democracy and quality of governance, and 
increases equality (Aljarallah, 2020). HC is a production factor and has a dual role in improving skills through 
learning and creating new ideas through R&D (Sankaran, Kumar, & Das, 2020). HC is an integral part of the 
success or failure of industrial institutional design (Prego, 2021). HC influences innovation strategy and 
performance (AlQershi et al., 2021), children's welfare (W. Zhang, 2021), corporate financial management (Liu, 
Liu, & Zhang, 2021), plays a vital role in promoting income equality (Managi et al., 2021), economic growth 
(Zhang & Wang, 2021; Song, Wei, Zhu, Liu, & Zhang, 2021;  Xu & Li, 2020), health (Fink, Venkataramani, & 
Zanolini, 2021; Wulczyn, Parolini, & Huhr, 2021) and even reciprocally on the ecological condition of an area 
(Sarkodie, Adams, Owusu, Leirvik, & Ozturk, 2020; Chen, Song, & Wu, 2021; Haini, 2021; Alvarado et al., 
2021). Several things that influence HC accumulation include economic growth (Rahim et al., 2021)(Égert et 
al., 2020), social mobility (Laajaj et al., 2022)(Varghese et al., 2021), demographic changes (Bairoliya & Miller, 
2021), energy availability (Rafi et al., 2021) and learning opportunities (Trude et al., 2021). Apart from HCI, 
GCI (Global Competitiveness Index) or global competitiveness is a possible indicator of a country's human 
resources readiness. 

The Global Competitiveness Index (GCI), elaborated by the World Economic Forum (WEF), is widely applied 
to evaluate and rank countries depending on the level of global competitiveness (Auzina-Emsina, 2014). The 
WEF report was published by a leading academic press (Oxford University Press) and masterminded by leading 
Harvard academics Jeffrey Sachs and Michael Porter (Lall, 2001). The GCI assesses the primary factors and 
institutions that determine improvements in countries' long-term growth and competitiveness (Önsel Ekici et 
al., 2019). The elements indicating global competitiveness are categorized into four sub-indices: fundamental 
provisions, human capital, supporting environment, innovation ecosystem, and market considerations (Auzina-
Emsina, 2014). This research assumes synthetically based on available research regarding 3 factors (HDI, HCI, 
and GCI) as benchmarks for the readiness of a country's human resources. All data related to HDI, HCI, and 
GCI can be accessed openly, freely, and legally on the Internet (UNDP, 2020; Worldbank, 2021). 

RESEARCH METHODS 

This research uses the K-Mean clustering method using the r program, K-Mean clustering is one of the most 
popular unsupervised learning methods in machine learning (Liao et al., 2022), and the classical and effective 

clustering method (Gu et al., 2021), aims to group or partition data {x1, …, xN}, xi ∈ RM into k clusters {C1, 
…, Ck}, k ≤ N (Hozumi et al., 2021). The goal is to find natural groupings in the data, so that researchers see 
data groupings as more reasonable (Rencher, 2002). Clustering is an approach to dividing a set of points (data) 
into similar groups called clusters (Abo-Elnaga & Nasr, 2022). Each cluster is composed of points that are the 
same and different from other cluster points. Clustering is a very important tool to assist researchers in solving 
various problems in several fields. 
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K-Means clustering analysis was explored to identify spatial clustering (Xie et al., 2019). K-Means clustering as 
a tool for data dimension reduction and multivariate grouping, grouping samples to minimize variation within 
groups and maximize variation between groups (Kazapoe et al., 2021). Applying the k-means procedure, several 
indices can be used, including Silhouette, Calinski, Davies, and Dunn (Cerqueti & Ficcadenti, 2022). The K-
Mean clustering procedure describes an algorithm that assigns each item to the cluster with the closest centroid 
(mean) (Johnson & Wichern, 1992). K-means clustering starts by selecting k points as k cluster centers or 
centroids (Shrifan et al., 2021). Then, each point in the dataset is assigned to the nearest centroid (Zhao et al., 
2020). The centroid is then updated by minimizing the within-cluster sum of squares (WCSS), which is defined 
as follows (Patel & Kushwaha, 2020).  

RESULTS AND DISCUSSION  

Data on the human resource readiness of countries in the ASIA region can be accessed freely and legally at 
related institutions (UNDP, World Bank, WEF). Some country data is not included due to limited data 
availability in Table 1. 

Table 1. Human Resource Readiness of Asian Countries 

COUNTRIES HDI HCI GCI COUNTRIES HDI HCI GCI 

Brunei Darussalam 0.838 0.63 62.8 Sri Lanka 0.782 0.60 57.1 

Indonesia 0.718 0.54 64.6 Turkey 0.820 0.65 62.1 

Cambodia 0.594 0.49 52.1 Saudi Arabia 0.854 0.58 70.0 

Lao_PDR 0.613 0.46 50.1 Yemen 0.470 0.37 35.5 

Malaysia 0.810 0.61 74.6 Jordan 0.729 0.55 60.9 

Myanmar 0.583 0.48 3.32 Azerbaijan 0.756 0.58 62.7 

Philippines 0.718 0.52 61.9 UAE 0.890 0.67 75.0 

Singapore 0.938 0.88 84.8 Israel 0.919 0.73 76.7 

Thailand 0.777 0.61 68.1 Lebanon 0.744 0.52 56.3 

Viet Nam 0.704 0.69 61.5 Oman 0.813 0.61 63.6 

China 0.761 0.65 73.9 Kuwait 0.806 0.56 65.1 

Japan 0.919 0.80 82.3 Georgia 0.812 0.57 60.6 

South Korea 0.916 0.80 79.6 Armenia 0.776 0.58 61.3 

Mongolia 0.737 0.61 52.6 Qatar 0.848 0.64 72.9 

India 0.645 0.49 61.4 Bahrain 0.852 0.65 65.4 

Pakistan 0.557 0.41 51.4 Cyprus 0.887 0.76 66.6 

Bangladesh 0.632 0.46 52.1 Kazakhstan 0.825 0.63 62.9 

Iran 0.783 0.59 53.0 Tajikistan 0.668 0.50 52.4 

Nepal 0.602 0.50 51.6 Kyrgyzstan 0.697 0.60 54.0 

The results of data analysis with K-Mean - Silhouette through the R program consist of descriptive statistics, 
distance matrix visualization results, results of determining and visualizing the optimal number of clusters, and 
clustering results. 

Table 2. Descriptive Statistics 

Vars N Mean Sd Median Trimmed Mad Min Max Range Skew Kurtosis Se 

HDI 1 38 0.76 0.11 0.78 0.76 0.11 0.47 0.94 0.47 -0.48 -0.47 0.02 

HCI 2 38 0.59 0.11 0.60 0.59 0.08 0.37 0.88 0.51 0.44 0.17 0.02 

GCI 3 38 61.13 14.01 62.00 62.10 11.86 3.32 84.80 81.48 -1.66 5.52 2.27 
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Figure 1. Distance Matrix Visualization 

The colors indicate the distance matrix value for each country. K-means clustering is a helpful algorithm for 
partitioning data into different categories, where the distance between data in the same category must be very 
close, indicating the most significant similarity between them (Fan et al., 2021). This is intended as a basis for 
clustering. In the single linkage method, the distance is found for each pair of clusters, and the two clusters 
with the smallest distance are combined. Therefore, the number of clusters is reduced by 1. Once two clusters 
are connected, this procedure is repeated for the next step: the distance between all pairs of clusters is calculated 
again, and the pairs with the minimum distance are combined into one cluster (Rencher, 2002). Meanwhile, this 
research uses a partition or optimization method, where observations are separated into g clusters without a 
hierarchical approach based on a distance or similarity matrix between all pairs of points. 

 

Figure 2. Optimal Number of Clusters 

The optimal number of clusters from k-means clustering is determined based on the Bayesian Information 
Criterion. The clustering results are evaluated using the Silhouette coefficient. Based on the analysis results, it 
shows that the optimal number of clusters is two clusters. Cluster 2 has the highest Silhouette coefficient, 
amounting to 0.497. So, it determines the number of clusters. 
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Table 3. Calculation Results of the Optimal Number of Clusters 

Cluster y 

1 0.0000000 

2 0.4973394 

3 0.4811556 

4 0.3421049 

5 0.2957281 

6 0.3190322 

7 0.3010123 

8 0.2824029 

9 0.3200697 

10 0.3070732 

Table 4. Clustering Results 

Countries HDI HCI GCI HDI_1 HCI_2 GCI_3 Cluster 

Brunei 838 63 628 7,11404E+14 3,3315E+14 1,1943E+14 1 

Indonesia 718 54 646 -3,51855E+14 -4,98509E+14 2,47915E+13 1 

Cambodia 594 49 521 -1,45056E+14 -9,60541E+14 -6,44337E+14 2 

Lao PDR 613 46 501 -1,28221E+14 -1,23776E+14 -7,87098E+14 2 

Malaysia 81 61 746 4,6331E+14 1,48337E+14 9,61716E+14 1 

Myanmar 583 48 332 -1,54802E+14 -1,05295E+14 -4,12626E+14 2 

Philippines 718 52 619 -3,51855E+14 -6,83322E+14 5,51881E+14 1 

Singapore 938 88 848 1,59745E+14 2,64331E+14 1,68979E+13 1 

Thailand 777 61 681 1,70914E+14 1,48337E+14 4,97745E+14 1 

Viet Nam 704 69 615 -4,75902E+14 8,87589E+13 2,66361E+13 1 

China 761 65 739 2,91463E+14 5,17963E+13 9,1175E+14 1 

Japan 919 8 823 1,4291E+14 1,90406E+14 1,51134E+14 1 

South Korea 916 8 796 1,40252E+14 1,90406E+14 1,31862E+14 1 

Mongolia 737 61 526 -1,83505E+14 1,48337E+14 -6,08647E+14 1 

India 645 49 614 -9,98671E+14 -9,60541E+14 1,94981E+14 2 

Pakistan 557 41 514 -1,77839E+14 -1,69979E+14 -6,94304E+14 2 

Bangladesh 632 46 521 -1,11386E+14 -1,23776E+14 -6,44337E+14 2 

Iran 783 59 53 2,24077E+14 -3,64763E+14 -5,80095E+13 1 

Nepal 602 5 516 -1,37967E+13 -8,68135E+13 -6,80027E+14 2 

Sri Lanka 782 6 571 2,15217E+14 5,59303E+14 -2,87437E+14 1 

Turkey 82 65 621 5,51915E+14 5,17963E+13 6,94642E+14 1 

Saudi Arabia 854 58 70 8,53172E+14 -1,28883E+14 6,33367E+14 1 

Yemen 47 37 355 -2,54926E+14 -2,06942E+13 -1,82925E+14 2 

Jordan 729 55 609 -2,54389E+14 -4,06102E+14 -1,6192E+14 1 

Azerbaijan 756 58 627 -1,51561E+14 -1,28883E+14 1,12292E+14 1 

UAE 89 67 75 1,17215E+14 7,02776E+14 9,90268E+14 1 

Israel 919 73 767 1,4291E+14 1,25721E+14 1,11161E+14 1 

Lebanon 744 52 563 -1,21482E+14 -6,83322E+14 -3,44541E+14 1 

Oman 813 61 636 4,89892E+14 1,48337E+14 1,76534E+14 1 

Kuwait 806 56 651 4,27868E+13 -3,13696E+14 2,83605E+14 1 

Georgia 812 57 606 4,81031E+14 -2,21289E+14 -3,76061E+14 1 

Armenia 776 58 613 1,62054E+14 -1,28883E+14 1,236E+14 1 

Qatar 848 64 729 8,00009E+13 4,25556E+14 8,4037E+14 1 

Bahrain 852 65 654 8,35451E+14 5,17963E+13 3,05019E+14 1 

Cyprus 887 76 666 1,14557E+14 1,53443E+13 3,90675E+14 1 

Kazakhstan 825 63 629 5,96218E+14 3,3315E+14 1,26568E+14 1 

Tajikistan 668 5 524 -7,94879E+14 -8,68135E+13 -6,22923E+14 2 

Kyrgyzstan 697 6 54 -5,37925E+14 5,59303E+14 -5,08715E+14 1 

Total 
Cluster 1 Cluster 2 

29 9 
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Figure 3. Cluster Visualization 

Based on the results of the K-Mean clustering analysis, the readiness of human resources in Asian countries 
shows that there are clusters or groups with the number of cluster 1 as many as 29 members and cluster 2 as 
many as 9 members, each clustered with color indication and dots or points indicating the distance. K-Mean 
clustering for the optimal number of two clusters is dichotomous, using cluster assumptions between good and 
poor human resource readiness. 

CONCLUSION 

Based on the results of the K-Mean clustering analysis, it is concluded that there are two clusters of human 
resource readiness in the Asian region, as follows: The group or cluster of countries with good human resource 
readiness consists of Singapore, Japan, South Korea, Cyprus, UAE, Israel, Bahrain, Oman, Turkey, Brunei 
Darussalam, Kazakhstan, Thailand, China, Saudi Arabia, Malaysia, Qatar, Azerbaijan, Armenia, Kuwait, 
Georgia, Lebanon, Jordan, Indonesia, Philippines, Viet Nam, Iran, Sri Lanka, Mongolia, Kyrgyzstan. The group 
or cluster of countries with poor human resource readiness consists of Tajikistan, India, Bangladesh, Lao PDR, 
Nepal, Cambodia, Pakistan, Yemen, and Myanmar. 
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